Track Etch Detectors (TED)

Main features:

passive, integrating detectors of charged particles (A,Z ≥ 1), insensitive to X-rays, gamma, electrons

Principle:

- 1) radiation induced damage in dielectrics
- 2) magnification => visualisation = track formation
- 3) evaluation = track counting, analysing =>
 - => information about particles, exposure,

detector characteristics ...

1) radiation induced damage

untreated detector

<u>Detecting materials:</u> particles:	Detected
inorganics	
glass, mica, minerals	heavy ions, fission
fragments	
organics	
polymers (PADC, CN, PC,)	protons, D, T, α , light ions,

Indirectly detected particles

neutrons, relativistic ions

via transformation in radiators

Radiators: polyethylene Li, B_{nat}, B_{enr} U, Th, Bi detector itself N, O

<u>Reaction:</u> (n,n), (n,n') - recoil protons, C (n,α) (n,f) (n,p), scattered recoils of C,

2) magnification => visualisation

processing

etching in caustic solutions

(NaOH, KOH in water)

dtto

+ HV/HF

$$V_T/V_B > 1, \alpha < \alpha_{crit}$$

 $V_B = V_T * \cos \alpha_{crit}$

Pretahnout obrazek No.2 z lonske prezentace ECE detektor, detaily ECE a CE stop ? foto of ECE-device ?

- 3) evaluation
- **CE tracks**
- *track density* visual counting (optical microscope, 200 500x), JSC, image analysers
- track analysis visually (particular tasks), image analysers
- **ECE tracks**
- *track density* visual counting (projective microscope, 100 200x, microfiche reader), image
 - analysers

Applications:

*x*study of nuclear reactions *x*nuclear filters production *x*dating (minerals, meteorites) *x*neutron dosimetry *x*cosmic rays studies *x*radon measurements *x*autoradiography *x*plasma physics

Previous and recent studies

- a. Study of optimal detector treatment (PADC, partially PC, CN, glass) and characteristics (PADC, energy dependence of neutron registration)
- b. Determination of critical angle and angular dependence of registration efficiency for various particles in PADC
- c. Measurement of LET spectra around nuclear facilities and at
- high altitudes (mountains, planes, spacecrafts)
- d. Measurement of neutron dose induced by cosmic rays at different altitudes. Collaboration NPI/INRNE
- e. Measurement of neutron dose around high-energy X-ray radiotherapy machines
- f. Soil gas radon concentration measurements. Collaboration NPI/INRNE

b. Determination of critical angle and angular dependence of registration efficiency for various particles in PADC

d. Neutron dose induced by cosmic rays at different altitudes

e. Measurement of neutron dose around high-energy X-ray radiotherapy machines

 $E_e > 10$ MeV, (e,e'n), (γ ,n) Varian Clinac 2100C (15 MeV), 13 Bonner spheres, $\phi = 2$, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 10, 12 and 15 inches, response matrix, deconvolution code, spectra unfolding

Nearest tasks:

- ECE-device in operational use in INRNE
- Development of SW treatment of direct binary picture (digital camera, scanner) without microscope. Introducing into routine, NPI/INRNE.
- Continuation of field measurement (radon, cosmic rays) using TED and TLD, NPI/INRNE.