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1. Classification of particle trajectories in magnetosphere.

Large variety, depending on particle energy and on magnetic and 
electric fields.

Energies: from < 1eV (ionospheric plasma) to > 10 17 eV (cosmic rays)

Classification (of particles) according to characteristic dimensions of 
their trajectories (d) with respect to dimension of magnetosphere 
(dm):

d ³ dm d << dm



Equation of motion (particle with rest mass m, charge q, velocity v in 
static magnetic field B):

(1) d(γ.m.v)/dt = d(p)/dt = q . v x B / . p ( p || v )

∂B/∂t = 0  (-rot (E)) d(p)2/dt = 0 

p = |p| is constant of motion

v = dx/dt = c2 p / U

Total energy:

U = (c2.p2 + m2.c4)1/2 U = γ m c2 γ = (1-v2/c2) -1/2

U, |v| and γ are constants of motion (in static B)  



Dipolar magnetic field

B (r) = - grad ( μo . M . r / (4 π r3) ) (2)

r – radiusvector (from center of dipole), μo=4π.10-7 (SI) 

Since B is static, the operator d/dt can be replaced by (v . ) and 
(1) has form

m . (v . ) v = q. v x B (3)

Eq. (3) with B (2) can be rewritten in non-dimensional form by using 
the Stormer length as a unit of length 

Stormer length

ls = (μo . M . |q| / ( 4 π m v)) 1/2

For Earth : ME = 8.1 . 10 22 A.m2 



Physical meaning of ls:

Curvature radius R of any smooth curve is 

R/R2 = ( t . ) t (4)

t – unit tangent vector to the curve at given point 

t = v/v (v = dr/dt) 

RHS of (4) is equivalent to [ (v/v) . ] (v/v)

Using (2 and 3)

R/R2 = - (μo q / (4 π m v2)) v x (M .r/r3) (5)

Estimate of R from (5) is according [1]

R = r (r/ls)2 F, where F is geometric coefficient of order of unity 
(depending on angle between B and v) (6)



Meaning of (6) : R = r (r/ls)2 F

If ls > r, curvature radius (R) is significantly smaller than r 

If ls < r,  R > r 

Characteristic distance (r) is size of magnetosphere

Example (for students). Compute the Stormer length of 

a. electron with kinetic energy 1 eV, 1 MeV, 10 GeV

b. proton with these energies 

in Earth magnetosphere and compare the values with distance to the 
sub-solar point of the magnetosphere (~10 Re). 

How these lengths are changed for Jupiter (MJ = 20.000 ME, 

1 RJ = 71.400 km, sub-solar point at 50 – 100 RJ) ?



Two categories of particles (their trajectories) in the 
magnetosphere of Earth:

a. Particles for which the Stormer length is comparable or smaller 
than dimensions of magnetosphere. For protons of energy 
above ~10 MeV (kinetic), for electrons above ~100 MeV. 

Cosmic rays ( galactic, anomalous, solar and accelerated in the 
interplanetary space to those energies) – Stormer trajectories  
(part 3).

b. Particles with Stormer length substantially larger than size of 
magnetosphere.

Trapped particles in radiation belts, auroral particles, particles of 
magnetospheric plasma populations - guiding center approach 
(part 2).



2. Low energy particles: short summary
If ls >> dm, theory of perturbation is used [1,2,4]. Magnetic and electric 
fields are “given”, not influenced by particle motion.

2.1. Perturbation theory.

2.1.1. Homogeneous (unperturbed) magnetic field

Rotation with gyroradius (rc = m.v⊥ /(|q|.B ), gyrofrequency
(ωc = |q| .B / m). Magnetic flux in Larmor ring (Φ) is proportional to the 
diamagnetic moment of particle motion (μ) 

(μ = π . rc
2 . J = m.v⊥

2/2B = W⊥ /B; J = |q| . ωc / 2π; W – kinetic energy)

Φ = π . rc
2 . B = 2 .π .μ .m / q2 (7)

Collisions. Change of velocity is δv = 1/m .∫Fi dt, Fi is interaction force, 
integration over time of interaction. Gyration center is shifted. 

If the force has a predominant direction (average F - 0), drift 
appears vF = (F x B)/(q.B2)  (8)



Presence of electric field E -0. Reference system S’ with E’ = 0 is 
found. Its velocity with respect to S (vE⊥ = (E x B)/ (B2))  is 
superimposed on rotation motion. 

Slow variations of magnetic field (relative variation of B is small 
over one gyroperiod): Change of energy over gyroperiod is [1] 

Δ W⊥ = W⊥ . (Δ B / B) ⇒ μ = W⊥ /B = const ; (9)

μ is saved if temporal and/or spatial variations of magnetic and electric 
field met by the gyrating particle over one gyroperiod are small (not 
valid for high energy particles – cosmic rays).

2.1.2. Drift motion [4].

Guiding center system GCS 

(if at any instant of time we can define a (moving) frame of reference in 
which an observer sees the particle in a periodic orbit perpendicular 
to magnetic field (with single periodicity and during at least one full 
cycle)).

Order of drifts: by value of (rc .| B|/B).



Zero order drifts: uniform static B plus external non-magnetic force 
F which is constant in time and space. To find GCS: perpendicular 
velocity (vF) of the reference system is found in which the external force 
F ⊥ * (= F ⊥ , * are quantities in GCS) is balanced by the induced electric 
field      (q . E* = q . vF x B) 

Similar to (8) vF= (F x B)/(q.B2)

First order drifts: non-uniform B. Gradients of B cause 1-st order 
drifts which are energy dependent.

Combined gradient-curvature drift

vCG = (m/2.q.B2).(v⊥
2 + 2.v||

2) e x ⊥B = 

= m.v2/(2.q.B2).(1+cos2α) e x ⊥B (e is unit vector along B, α PA) (10)

If rc .| B|/B <<1 ⇒ vCG << v 



Second order drifts: time-dependent zero or first order drifts (e.g. time-
dependent E, or direction-changing drift along a curved equipotential). If 
frame of reference moves with v (changing in time), it is accelerated and 
inertial force appears to an observer in that frame – m . dv/dt ⇒
“true” GCS is moving with velocity v plus additional drift (vs) :

vs = - (m/qB) . (dv/dt x e) (11)

which is necessary to induce electric field that cancels the effect of 
inertial force in GCS. For GCS approximation to remain valid, the 
change of v during one gyroperiod must be very small 

(if Tc.(dv/dt)/v <<1, (11) implies vs<<v). 

Combining (11, 10, 8) more general expression for drift is:

vD = e/(q.B) x [ -F + (m/2B).(v⊥
2 + 2v||

2) ⊥B + m.dvD/dt] (12)

F represents all external forces, including all electric field forces 
(electrostatic and induced). For computations of vD the iterations are 
needed. Complete expression for vD including higher orders is in [7]. 



2.2. Adiabatic invariants.

If particle motion is possible to assume as superposition of more (3 
in case of geomagnetic trapped population) cyclic motions (with 
different periodicities), the useful approach to trajectory checking is by 
adiabatic invariants connected with these motions. Theory is e.g. in [9].

First invariant. Gyroradius is defined in GCS: rc = p⊥*/q.B*; the 
associated gyroperiod Tc = (2π.rc)/v⊥*= (2π.m*)/q.B* and the 
gyrofrequency ωc = 2π/Tc = q.B*/m*. These expressions are valid 
relativistically assuming m = mo.γ, γ = (1-β2)-1/2; β=v*/c.

When either a zero order or first order drift acts alone, the kinetic energy 
of particle is conserved in original frame of reference (OFR). When both 
drifts act together, kinetic energy does not remain constant. 

There is, however, quantity (related to gyration) conserved when GCS 
approximation holds, that is, as long as a spatial variations are very 
small over rc and time variations are very small over Tc. 

μ= p⊥*2/(2moB) = const (p⊥* = p* is particle momentum in GCS) (13) 
Relativistic magnetic moment or 1st adiabatic invariant.



Second invariant.

Related to the bounce motion (between the mirror points, for 
trapped particles in the magnetic mirror). p = m.v + e.A

(A is magnetic field vector potential)

The quantity

J = ∫ p|| ds (14)

is conserved (the path of integration is along a field-line: from the
equator to the upper mirror point, back along the field-line to the
lower mirror point, and then back to the equator).



Third invariant. 

is associated with the cyclic longitudinal drift of particles around the
earth. Similarly to guiding center associated with a particle gyromotion
around field-lines, the bounce center lies on the equatorial plane, when 
particles are azimuthally drifting around the earth. 

K = e . ∫ Aφ ds = e . Φ (15)

Where Aφ is magnetic vector potential (its φ component). Integration is 
along the guiding drift shell. Φ is the total magnetic flux enclosed by 
the drift trajectory (by the orbit of the bounce centre around the earth).

Adiabatic approximation holds for Tc << Tbounce<<Tdrift. 

Periodic forces on time scales Tc, Tbounce, Tdrift may yield in violation 
of corresponding invariants. 



Three cyclic motions, each one connected with adiabatic invariant

L (Re)



Frequencies of 
cyclic motions for 
equatorially trapped 
charged particles.

Copied from [10]. 

Upper right corner: 
adiabatic approach 
is not valid 
(periodicieties are 
comparable)

Cosmic rays 



3. High energy particles
3.1. Stormer theory for dipolar field.

λ– magnetic latitude
ψ-angle (z,r, in Rz plane)

Equation of motion (m.dv/dt=q.v x B) is solved as (a) motion of 
meridian plane and (b) motion within the meridian plane.

For (a) using equivalence of moment of force and time derivative of the 
moment of momentum with respect to z axis (M=RFφ=d/dt(Rm.vφ)) [11]

(RFφ = R2.m.dφ/dt)

Since v is constant, time is substituted by geometrical variable s = v.t .

R2.dφ/ds = ls2 . (R2/r3) + b, where ls is Stormer length (A)

Adjusting the scale as ls = 1, a universal equation is obtained 
independent on mass and velocity of particle. 

Merid. plane 



Meaning of ls in equatorial plane of dipolar field:

Stable trajectory: Centrifugal force = Lorentz force

m.v2/Ro = q.v.μo.M/(4.π.Ro
3) ⇒ Ro = (μo.M.|q|/(4.π.m.v))1/2 = ls

Circular periodic orbit of particle in dipolar field is that at ls.

Limit of (A) for r ∞ is moment of particle momentum with respect to z
outside the influence of dipolar field. By putting M |r ∞=- 2.γ, the form of
motion of meridian plane (with the particle) is

R2.dφ/ds = ± (R2/r3) - 2.γ (± for sign of charge) (Β)

For (b) (motion in meridian plane, (Rz)). Kinetic energy (T=1/2.m.v2) is 
conserved. Using coordinate system with m = v = 1, 

T=(1/2).[R2.(dφ/ds)2 + (dr/ds)2 + r2.(dψ/ds)2] = 1/2. (C) 

Motion is divided into (1) parallel and (2) perpendicular to meridian. 
Kinetic energy in Rz plane is Q’.

According to (C,B) ⇒ Q’ = (1/2).[1-(±(R/r3) – 2.γ/R)2] (D)



From (D): Q’ = (1/2).[1-(±(R/r3) – 2.γ/R)2] (D)

1. Motion in meridian plane is independent on rotation of that plane (Q’
is indepentent on φ). 

2. For given γ the kinetic energy Q’ is only function of coordinates. 

For Q = 2Q’ there exist 2 characteristic values:

maximum (Q=2, T=1). Particle is moving in meridian plane.

minimum  (Q=0). Particle is moving perpendicular to meridian plane 
and velocity projection to Rz plane changes its sign (particle after 
reaching the point Q=0 is moving in reversed direction). The line Q=0 
at plane Rz is enclosing the region forbidden for particle. 

(D) Provides system of equipotential lines. Q=0 is most important. By 
rotating Q=0 around z axis, the rotational surface is obtained:
segment of space near the dipole to which the particles cannot enter.
Shape and extent of this segment of space depends on γ. 



3.2. Allowed and forbidden trajectories.
When using system m = v = 1 then Q = vmer

2, vn = ±(1-Q)½ (meridional
and normal components of v). 

Adjusting ω as angle between instantaneous velocity vector v of the 
particle and normal to meridian plane which follows the particle in its 
orbit (measured consistently with φ, i.e. from west to east) 

vn
2 = v2 . cos2(ω) = cos2(ω) = 1-Q

According to (D) for positively charged particles 

cos(ω) = (R/r3) – (2.γ/R) (E)

cos(λ) = R/r ⇒ cos(ω) = cos(λ)/r2 – 2.γ/(r.cos(λ)) (F)

λ is latitude. 

Solving (F): r = (cos2(λ)/(γ ± (γ2 + cos(ω).cos3(λ))1/2) (G)

For limiting surface Q=0, cos(ω)= ± 1 and 

r = cos2(λ)/(γ ± (γ2 ± cos3(λ))1/2 (H)



The solutions of : r = cos2(λ)/(γ ± (γ2 ± cos3(λ))1/2

r1 = cos2(λ)/(γ + (γ2 + cos3(λ)) ½)

r2 = cos2(λ)/(γ + (γ2 - cos3(λ)) ½)

r3 = cos2(λ)/(γ - (γ2 - cos3(λ)) ½)

3 solutions for γ2 > cos3(λ) (a)  

1 solution  for γ2 < cos3(λ)  (b)

In case (a) the radial line crosses surface Q=0 three times (region of 
allowed trajectories Q>0 is composed of two isolated regions); 

In case (b) there is only one region of allowed trajectories. 

Max.  cos3(λ) = 1, for γ > 1  two regions of allowed trajectories

Details and complete calculations regarding the problem “given a 
particle approaching a magnetic dipole from infinity, what is its 
trajectory?” is e.g. in book [13]. No general solution to the problem, 
but it is possible to define permitted and forbidden zones for any 
particle approaching from infinity. 



A B

C D

Regions (in polar coordinates r,λ) 
accessible to high energy 
particles entering Earth’s 
magnetic field. Shaded regions 
have |sin(θ)|>1 – forbidden. 
The distance units are Stormer
units, i.e. distances in units 
ls=(μo.M.q/(4πp))1/2

θ = π/2 – ω

Α: γ =1.001

Β: γ = 0.999

C: γ = 0.8

D: γ = 0.3

Particle momentum is “hidden”
in r and γ.

Specifying particle momentum – the Earth can be drawn in these diagrams.  For γ=1 
there is a critical momentum at which Stormer length is equal to radius of Earth 
(p1=59.6GeV/c). For this momentum the Earth is a circle with r1=1. For p=4p1 the r=2. 



If γ > 1, particles cannot come to r < 1 

Using (F )  - interval of angles ω < ωo with forbidden 
directions is obtained 

(“opened” for π > ω > ω0 measured from east direction) 

cos(ωo)  = cos(λ)/r2 – 2.γ/(r.cos(λ)) (r <1) 

Stormer cone



Access of positively charged particles is “more difficult” from east. 

For given position and given momentum there is a cone with axis in 
east direction for which the access of particles is forbidden.

Its extent is decreasing with increase of momentum and with latitude.

Shadow cone is due to the presence of earth body. 
(from A.M. Hillas, Cosmic Rays, 1972)



3.3. Concept of cut-off rigidity and asymptotic directions. 

Usually the effects of geomagnetic field on cosmic rays are 
expressed in terms of rigidity. 

total 
energy U

mass

rest mass 

velocity 

momentum 



proton rest 
energy 

A-atomic mass 
number 
(nucleon 
number)

Z – charge number 
(ratio of charge to 
elementary charge)

kinet. en./nucl.

Definition by [12] (in V)

(16)

(17)



Why “rigidity”?

For given B the gyroradius is proportional to rigidity

centrifugal f. Lorentz f.

gyroradius



rest energy (mass) of selected particles



Directional definitions for cosmic ray access (from Cooke, D.J. et 
al.,  Il Nuovo Cimento, 14 C, N 3, 213-233, 1991):

Cones (each definition is for charged particles of a single specified 
rigidity value arriving at particular point in geomagnetic field):
Allowed cone – solid angle with all directions of arrival of all trajectories 
which do not intersect the earth and which cannot possess 
sections asymptotic to bound periodic orbits (because rigidity is too 
high to permit such sections to exist in the directions of arrival 
concerned).
Main cone – The boundary of allowed cone. It is composed of 
trajectories which are asymptotic to the simplest bound periodic orbits 
and trajectories which graze the surface of earth (For this purpose the 
surface of earth is generally taken to be at the top of effective 
atmosphere).
Forbidden cone – The solid angle region within which all directions of 
arrival correspond to trajectories which, in absence of solid earth, 
would be permanently bound in the geomagnetic field. Access in 
these directions from outside the field is therefore impossible.



Stormer cone – the boundary of forbidden cone. In axially symmetric 
field the surface forms a right circular cone. 

Shadow cone – the solid angle containing all directions of particle 
arrival which are excluded due to short range earth intersections 
of the approaching trajectories, while the particle loops around the 
local field lines

Penumbra – the solid angle region contained between the main 
cone and the Stormer cone. It contains a complex structure of allowed 
and forbidden bands of arrival directions.

Rigidity picture definitions (each definition refers to particles 
arriving at a particular site within geomagnetic field from a specified 
direction.

Cut-off rigidity – location of transition, in rigidity space, from 
allowed to forbidden trajectories as rigidity is decreased



Stormer cut-off rigidity, Rs – the rigidity value for which the Stormer
cone lies in the given direction. In a dipole field the direct access for 
particles of all rigidity values lower than Stormer cut-off rigidity is 
forbidden from outside the field. In a dipole approximation (in GV) 

Rs = (M.cos4(λ))/{r2.[1 + (1 – cos3(λ).cos(ε).sin(ξ))1/2]2}

M is the dipole moment and has a normalized value of 59.6 when r is 
expressed in units of earth radii

λ is magnetic latitude

r is distance from the dipole in earth radii

ε is azimuth angle measured clockwise from geomagnetic east direction 
(for positive particles)

ξ is the angle from the local magnetic zenith direction

(18)



Upper cut-off rigidity (RU) – rigidity value of the highest detected 
allowed/forbidden transition among a set of computed trajectories.

Lower cut-off rigidity (RL) – the lowest detected cut-off value (i.e. the 
rigidity value of the lowest allowed/forbidden transitions observed 
in a set of computed trajectories). If no penumbra exists,  RL = RU. 

Effective cut-off rigidity (RE) – the total effect of penumbral structure 
in a given direction may be represented usefully by this single value. 
Effective cut-offs may be either linear averages of the allowed rigidity 
intervals in penumbra, or functions weighted for cosmic ray spectrum 
and/or detector response. For linear weighting

RU

RE = RU - ∑ ΔRi (allowed)                               (19)

RL

Where the trajectory calculations are performed at rigidity interval 
(step) ΔRi. 



Example (students):

What is the Stormer cut-off rigidity for cosmic ray access to Sofia 
position 

a. from the vertical direction, b. from direction 30o declined from zenith 
from east (magnetic) and c. from west (magnetic). What kinetic energy 
of protons and of anomalous cosmic ray oxygen ions (A=16, Z=1) these 
values correspond

Lat = 42.45N, Long = 23.20E

http://swdcwww.kugi.kyoto-u.ac.jp/igrf/gggm/index.html

Conversion from Geographic to Geomagnetic coordinates
Geomagnetic:  40.75 N104.00 E

http://swdcwww.kugi.kyoto-u.ac.jp/igrf/gggm/index.html


Asymptotic directions.

Allowed trajectory. Charged particle of cosmic rays arriving above the 
site of particular station from a given direction (local) arrived formerly to 
magnetospheric boundary at another direction (asymptotic direction). 
Figure (from Shea,M.A. and  Smart, D.F., ERP No 524, AFCRL-TR-75-
0381, 1975) illustrates the definition of asymptotic latitude and 
longitude.  



(20)



Asymptotic directions are usually plotted as (long, lat) projection on 
the map. The computed asymptotic longitudes and latitudes for a high 
cut-off rigidity station and vertical access. Wide range of asymptotic 
longitudes for 13-20 GV. Example for high cut-off rigidity station 
(from Shea, M.A. and D.F. Smart, 1975)



Asymptotic directions computed for a low  cut-off 
rigidity station. The interval of asymptotic longitudes 
is narrower. (from Shea, M.A. and D.F. Smart, 1975)

A
tm

ospheric cut-off
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