Dosimetry methods to estimate external exposure to natural radiation; their calibration

Dosimetry for External Exposure Measuring methods used

Component	Туре	Equipment
low LET (e ⁻ , γ, HE protons)	active	IC, GM counters, plastic scintillators,
		APD's
	passive	TLD, OSLD, RPL
high LET (neutrons,HECP)	active	Moderator based (spectrometry,
		modifications)
	passive	Track etch detectors, Bubble detectors
all	active	Tissue equivalent proportional counters
		Si-energy deposition spectrometers

Passive detectors

Bubble detectors

Track etched detectors

Thermoluminescent detectors

Bubble detectors BTI

Relative response of bubble detectors to neutrons

CE-tracks:

small, difficult evaluation – image analyser necessary, quantitative & qualitative information => particle identification, spectrometry

ECE-tracks:

large, easy evaluation (counting) – optical microscope, quantitative information only => Rn and neutron (via transformation to CP) measurements

Track detectors response to neutrons

TLDs – CaSO₄ : Dy of INRNE

Energy response of $CaSO_4$: Dy to photons

Relative response of TLDs to neutrons

Active detectors

- MDU-Liulin spectrodosimeter
- Tissue equivalent proportional counters
- Moderator- type "rem"-counters
- Scintillator based environmental monitors
- GM-based environmental monitors
- Ionization chambers (ISS 112)

SPECIFICATIONS OF MDU

- Dose range: 0.093 1.56 mGy;
- Flux range: 0.01 1250 part/cm2s;
- Energy loss range: 0.0407 20.83 MeV;
- Pulse height range: 19.5 mV 5.0 V;
- LET (Si) range: 0.27- 69.4 keV/m;
- Temperature range: 0oC +40oC;
- Power consumption: typically 52 mW;

-Size 100x100x50 mm; -Total mass (including 2x 0.1 kg SAFT LSH20 3.6 V Li-ion batteries): 0.33 kg.

- Operation time 110 days

RESULTS - Measurements on aircraft

General remarks:

- Event and D(Si) distributions very similar to those in CERN concrete reference field
- Since April 2000 measurements performed during more than 1000 individual flights
- To interpret D(Si) in terms of radiation protection quantities, CERF/concrete and other measurements used; threshold energy deposited 1 MeV; obtained apparent H*(10); some examples are given in Figures

TEPC in the flight case

Examples of TEPC measured spectra

Plastic scintillator NB 3201

GM counter RP 114

IBERIA measuring flight set

Moderation type of neutron detectors

 Principle: While the neutron effects are more important at higher energies, the cross sections of their interactions at low;

typical example: thermal neutron detector at the centre of a moderator, preferentially spherical geometry

- Fluence measurements : ~ 5 inches
- H measurements (rem-meters): 10 (12) inches or comparable always – overestimation intermediate underestimation over 10 MeV

Integral ambient dose equivalent measured with the different systems for the round trip CDG-FAI-NRT

Method	Non-neutron component (µSv)	Neutron component (µSv)	Total (µSv)
TEPC	49	69	118
Silicon detector	58	84	142
GM counter	78	-	-
EPD	65	-	-
TLDs + etched track	51	77	124
Bubble detector	-	67	-
Average	$54\pm5^{*}$	$76\pm9^{*}$	$129\pm10^{*}$

* One standard deviation

Relative sensitivity of different detectors

Detector - Equipment	Component	Threshold, µSv
NRPB passive survey box	total	60
Single individual - TLD	non-neutron	100 - 1000
Single individual - track etched	neutron	200 - 2000
Single - bubble (1 bubble per 1 µSv)	neutron	150
Electronic dosimeter ($H_{min} \sim 1 \mu Sv$)	non-neutron	8
Ionization chamber-, scintillator-, Geiger Muller tube-based	non-neutron	0.4
Tissue Equivalent Proportional Counter	total	1 - 4
Tissue Equivalent Proportional Counter	non-neutron	0.4
Si-diode energy deposition spectrometer LIULIN	total	4
Si-diode energy deposition spectrometer LIULIN	non-neutron	0.4
"Rem-meters", LINUS included	neutron	1

Threshold: ± 15 % at 2s (95%)

CALIBRATION

Quantity to be determined: Ambient dose equivalent H*(10)

> Low LET component (γ , e⁻¹, mesons):

 ✓ Gamma radiation (⁶⁰Co, ¹³⁷Cs), in terms of K_{air}; H*(10)/ K_{air =} 1.20 (Cs); 1.16 (Co)

> High LET component (neutrons):

- ✓ Radioisotope neutron sources (AmBe; ²⁵²Cf); and
- High energy radiation reference fields CERF;
 JINR Dubna;
- In both cases directly in H*(10) determined independently (MC calculation, TEPC)

CERF – top concrete irradiation area; mostly passive detectors

Remarks to calibration – problems to treat!

- Low LET component detectors:
- Sensitivity to neutrons (particularly high energy!);
- Low response to muons;
- Neutron component detectors:
- Low response to high energy neutrons
 (UNSCEAR93 26 μSv; UNSCEAR2000 48 μSv per year);
- Not-negligible response to high energy charged particles;