BEOBAL FP6 Seminar

Radiological environmental protection at CERN

P. Vojtyla CERN, Safety Commission

Introduction

- CERN accelerators
- The source of the problem beam loss
- Radiation and radioactive substances
- Monitoring
- Impact assessment
- Example (2003)
- Outlook

CERN accelerators (1)

- Linacs
- PSB
- PS
- SPS
- (LHC)
- Experimental Areas
 - ISOLDE
 - AD, LEAR, n-TOF
 - East Hall, West Hall
 - Prévessin site
 - CNGS

CERN accelerators (2)

INRNE Sofia / 30 March 2006 4/48

The source of the problem – beam loss

- High-energy particle beams must interact with matter to generate radiation and to produce radioactive substances:
 - Beam cleaning elements (collimators)
 - Beam extraction elements (kickers...)
 - Targets
 - Detectors
 - Beam dumps

The source - basic difference

- Hadron machines (p, HI)
- Lepton machines (e+e-)
- Nuclear cascades (p, n, n-bar, p-bar, π^{0,±}, K, γ, e[±], μ[±])
- Activation of materials
- Synchrotron radiation negligible
- Example: SPS, LHC

- Only electromagnetic cascades (γ, e[±], μ[±])
- Synchrotron radiation
- Activation negligible
- Example: LEP the clean machine

Stray radiation (1)

- To get into the environment the radiation must pass thick material layers:
 - Shielding structures
 - Earth (for underground installations)
- It must be penetrating
 - Photons (electrons and positrons)
 - Muons
 - Neutrons
- Can be calculated by Monte-Carlo (FLUKA)

Stray radiation (2)

Courtesy of S. Roesler and G.R. Stevenson (CERN)

INRNE Sofia / 30 March 2006 8/48

Stray radiation - photons

- Propagated EM cascade
- Mixture of γ and e[±]
- Lower energies replenished by Compton-scattered γ of higher energies
- Up to 10 MeV (neutron shoulder)

Stray radiation - muons

- Progeny of π^{\pm}
- All energies
- Usually MIP's (~GeV/c)
- Difficult to absorb
- Remain well focused

Stray radiation - neutrons

- From thermal to several MeV
- Scattered
- Activating (e.g. (n,γ) events)

Stray radiation - time structure

- An important constraint for monitoring: Pulsed radiation fields
- Two extreme cases:
 - PS super-cycle: ~0.1 μs each 12 s
 - Collider: train of bunches / several μs between two bunches – quasi-continuous
- Photons and muons practically follow the beam time structure
- Neutrons can be de-synchronized through moderation

Stray radiation – minimization strategy

- Avoid beam losses (accelerator technology, reliability of operation)
- Shielding structures (earth, concrete, iron, marble...)
- Chicanes
- Underground (LHC down to -150 m)

Radioactive substances

- Spallation reactions (neutron-deficit radionuclides, β+, EC)
- Neutron capture (neutron-rich radionuclides, β-)
- β/γ emitters, no α (except ISOLDE)
- Beam / target the higher Z, the more species
- Wide range of half-lives
- The shorter the half-live, the higher the activity: $A = \lambda N$
- But too short-lived radionuclides do not reach the environment or have a negligible radiological effect

Radioactive substances

- Carried to the environment by fluids:
 - Air
 - Ventilation of beam areas (cooling by air often needed)
 - Water
 - Water-cooling circuits (usually closed, primary circuits have ion exchangers that trap radioactive ions e.g. ⁷Be)
 - Water leaks (cannot be 100% excluded)
 - Infiltration water (cannot be 100% avoided)
 - Particles from earth and concrete (transported with fluids)

Radioactive substances – air (1)

- Direct activation:
 - Targets: O₂, N₂, Ar, CO₂
- Aerosol:
 - As from earth & concrete
 - Will be discussed later

- Dominating short-lived:
 - ¹¹C, ¹³N, ^{14,15}O (β ⁺)
 - ${}^{41}Ar (\beta^{-}, (n, \gamma) \text{ on } {}^{40}Ar)$
- Dominating longer-lived:
 - ⁷Be (EC)
 - ³H (HT), ³²P, ³³P, ³⁵S, ²²Na
- Others:
 - 10Be, 14C, 19O, 18F, 23,24Ne,
 24Na, 25Na, 27,28Mg, 26,28,29Al,
 31,32Si, 30, 35P, 37,38S,
 34m,36,38,39,40Cl, 37,39Ar, 38,40K

Radioactive substances – air (2)

INRNE Sofia / 30 March 2006

Air: effective dose breakdown – urban population

Air: effective dose breakdown – rural population

Radioactive substances - water

- Direct activation:
 - Target: H₂O
- Particles:
 - As from earth & concrete
 - Will be discussed later
- Leached:
 - ³H, ²⁴Na, ²²Na (soluble)

- Dominating short-lived:
 - ¹¹C, ¹³N, ^{14,15}O (β +)
- Dominating longer-lived:
 - ³H (HTO)
 - ⁷Be (EC)

Radioactive substances - particles

- Targets with high Z available
- Interplay between mobility and half-life
- Selection
- Sometimes species one would not expect

- ³H, ⁷Be,
- ²²Na, ²⁴Na
- 46Sc, 48V, 54Mn,
- 56Co, 57Co, 58Co, 60Co
- 65Zn
- 134Cs
- 152Eu

Except for ³H, activity densities are 2-3 orders of magnitude below that of ⁷Be but still to be considered.

Radioactive substances - ISOLDE

- Uranium & Thorium carbide targets
 - − High-Z targets → produce anything you can imagine
- Emanating alpha activity (²²⁰Rn → ²¹²Pb)
- Emanating iodine (124I, 125I, 126I, 131I)
- Noble gases captured from vacuum pumps (⁴²Ar, ⁸⁵Kr, ¹²⁷Xe, ^{129m}X, ^{131m}Xe, ¹³³Xe)

Air – minimization strategy

- Avoid beam losses
- Avoid development of nuclear cascades in air
 - Solid matter shielding (iron, marble...)
 - Helium balloons (low-Z target)
- Semi-closed cooling circuits
 - Decay of short-lived
 - Pre-cleaning of aerosol
- HEPA filters at the end of the ducts

Water – minimization strategy

- Closed cooling circuits equipped with ion exchangers close to hot areas (only HTO remains)
- Construction in geological layers impermeable to water (molasse)
- Concrete with layers impermeable to water
- Avoid draining over concrete (metallic pipes)
- Cover the facility against rain
- Hydro-geological study before the project starts

Monitoring – main components

- Monitoring of releases of radioactive substances (air, water)
- Monitoring of stray radiation
- Measurement of activity densities in environmental matrices
- Assessment of the ecological and radiological impacts

Monitoring - 9 ventilation stations (1)

- Differential ionization chamber
 - Short-lived radioactive gases
 - ¹¹C, ¹³N, ¹⁴O, ¹⁵O, ⁴¹Ar
 - Online readout
- Aerosol sampler
 - Analyzed offline
 - ⁷Be, ²²Na, ⁴⁶Sc, ⁴⁸V, ⁵⁴Mn, ⁶⁰Co...
- Ventilation flow-rate sensor
 - Online readout
- Monthly balance sheets of released activity

Monitoring - 9 ventilation stations (2)

- Tritium: Conservative estimates based on
 - Maximum ³H activity densities measured (HTO, HT)
 - Air amounts released

ISOLDE:

- Exchange of UC and ThC targets shortterm operations with alpha emanation
- Emptying of reservoirs with pump gases
- Screening of total alpha on aerosol
- Lucas cell and decay curve analysis

Monitoring - 5 water monitoring stations

- At the end of drainage networks
- Water monitor
 - NaI(TI) probe in a water tank
 - For short-lived (¹¹C, ¹³N, ²⁴Na)
 - Online readout
- Automatic water sampler
 - Analyzed offline
 - ³H, ⁷Be, ²²Na, total beta
- Water flow-rate sensors
- Monthly activity density sheets
- Annual releases

Monitoring - stray radiation

- Two kinds:
 - Gamma and penetrating charged particles (µ)
 - Neutrons
- Two instruments
 - Pressurized ionization chamber
 - Rem-counter
- Calibrated for $H^*(10)$
- Online readout
- Quarterly integration
- 40 stations completed with
- about 200 ⁶LiF/⁷LiF TLD

Monitoring - environmental samples

High volume aerosol sampler 600 m³/h
Filter exchanged once a week

- 9 aerosol sampling stations
 - Filters exchanged twice a month
- 4 grass/soil sampling places
 - Annual collection (late summer)
- 2 precipitation collectors
 - Monthly collection (precipitation rate online)
- 6 sampling points in rivers
 - Annual (late summer)
 - Water
 - Sediment
 - Bryophytes
- 5 groundwater wells
 - Annual (autumn)
- Agricultural products
 - According to availability: colza, asparagus, wheat, sunflower, wine

Monitoring – environmental laboratory

- Optimized for β/γ analyses (+ α screening for ISOLDE)
- Gamma spectrometry
 - 4 HPGe detectors (up to 52% SLL)
 - Genie 2000
- Total α/β counting
 - Proportional counter with automatic sample changer (Eberline FHT770GR)
- Liquid scintillation counter (³H)
 - Packard TRICARB 3700 TR
 - MDA: 1.6 Bq/l, customized DE software
- Auxiliary equipment
 - 4 water evaporators, flame photometer for [K+], 2 drying ovens, distillation apparatus...

Detection limits

- Release monitors:
 - Short-lived gases in ventilation: ~10 kBq/m³
 - Water (Bq/l):
 - ¹¹C, ¹³N: 1.6
 - ²⁴Na: 3.0

- Laboratory:
 - Aerosol (µBq/m³):
 - Total β: 25
 - ⁷Be: 60
 - ²²Na, ⁶⁰Co, ¹³⁷Cs: <4
 - Aerosol HVS (µBq/m³):
 - ⁷Be: 7
 - ²²Na, ⁶⁰Co, ¹³⁷Cs: <0.5
 - Water (Bq/l):
 - Total β: 0.014
 - ³H: 1.6
 - ⁷Be: 2
 - ²²Na, ⁶⁰Co, ¹³⁷Cs: <0.2

Monitoring - spatial extent

INRNE Sofia / 30 March 2006

Impact assessment – ecological

- Environmental samples:
 - Comparison with Swiss immission limits for air and water (ORaP)
 - Comparison with Swiss exemption limits for other matrices (grass, soil, sediment, bryophytes..., ORaP)
- Agricultural products:
 - Comparison with Swiss food limits (OSEC)

Impact assessment – radiological (1)

- Expressed in terms of effective dose to members of the public
- CERN Radiation Safety Manual:
 - Guideline value related to source: 0.3 mSv/a
- Critical groups of the population:
 - Meyrin Site: Border guards
 - Prévessin Site and SPS: Waste dump workers
 - Water releases: People making use of water from the rivers Nant d'Avril (CH) and Le Lion (F).

Impact assessment – radiological (2)

- Stray radiation:
 - Directly from the readings of the stray radiation monitors assuming suitable occupancy factors
- Releases of radioactive substances:
 - Methodology based on:
 - HSK-R-41 (mainly air)
 - IAEA Safety Report No. 19 (additional exposure pathways added to those assumed in HSK-R-41)
 - ICRP 72
 - Computer code available
 - Weather statistics from the airport Geneva Cointrin (72 wind direction sectors, 20 wind speed bins, 6 stability classes)

Impact assessment – radiological (3)

- Air releases
 - Scenarios
 - Short-term actual release
 - Short-term hypothetical release for release limit calculation
 - Short-term accident
 - Long-term chronic release
 - Exposure pathways
 - External from radioactive plume and ground deposition
 - Inhalation
 - Ingestion (fruits and vegetables, meat, dairy products)

Impact assessment – radiological (4)

Water

- Scenarios
 - Release into a river + field irrigation
 - Release into a sewage treatment plant
- Exposure pathways
 - External from immersion in the river water and from sediment or sludge
 - Drinking of water and ingestion of fish from the river
 - Ingestion of food (watered animals, irrigated fields, as for air)
 - External on irrigated fields, inhalation on irrigated fields
 - Inhalation of re-suspended sludge
 - Fertilization of fields with sludge (F), burning of sludge (CH)

Impact assessment – radiological (5)

- External exposure from radioactive plume dominates
 Special attention in the model
- Space integral of the dose kernel from Gaussian plume including conversion from the dose absorbed in air to the *effective* dose

$$D_{\gamma} = Q \frac{\varepsilon}{\rho_{\text{air}}} \frac{1}{4\pi} \sum_{i} e_{\text{kerma}}(E_{i}) \mu_{\text{a},i} E_{i} Y_{i} \int \frac{B(E_{i}, \mu_{i}r) \exp(-\mu_{i}r) \chi(\mathbf{r})}{r^{2}} d^{3}\mathbf{r}$$

Impact assessment – radiological (6)

$$\int \frac{e^{-\mu r} f(\mathbf{r})}{r^2} d^3 \mathbf{r} \longrightarrow dP/dr = \mu e^{-\mu r} \longrightarrow \frac{2\pi}{\mu} \frac{1}{N_0} \sum_{i=1}^{N_0} f(\mathbf{r}_i)$$

- Monte Carlo integration with biased sampling of distance to volume elements $d^3\mathbf{r}$
- Random sampling of weather situations (for longterm releases) according to the weather statistics
- Resembles an analog Monte Carlo simulation

Example – net doses in 2003

Example – ⁷Be in aerosol in 2003 (1)

Example – ⁷Be in aerosol in 2003 (2)

Example – river bryophytes in 2003

Reference river Bq/kg dry weight Sample LL1 LL3 NA ٧E LL2 LL4 River Le Lion (F) Nant d'Avril (CH) Versoix (CH) Date 19/09/2003 18/09/2003 18/09/2003 19/09/2003 18/09/2003 18/09/2003 ⁷Be 380 ± 30 1470 ± 70 300 ± 20 340 ± 20 180 ± 30 280 ± 20 ⁵⁴Mn 12 ± 2 97 ± 3 < 0.5 < 3 < 2 < 2 60Co 2.1 ± 0.6 < 1 < 0.6 < 4 < 1 < 2 ¹³⁷Cs 16.7 ± 0.8 11 ± 2 7.1 ± 0.7 14 ± 2 6 ± 2 7 ± 4

Releases and effective doses in 2003

Radionuclide category	R (GBq)	D (Sv/Bq)	<i>Ε</i> (μSv)	R (GBq)	D (Sv/Bq)	<i>Ε</i> (μSv)
Air releases	Meyrin site			Prévessin site		
Tritium (water vapour)	170	5.7E-20	0.0097	17.0	3.8E-19	0.0065
⁷ Be (aerosol)	0.30	1.9E-17	0.0056	0.017	1.6E-16	0.0028
Short-lived gases (11C)	9600	3.4E-19	3.3	1380	5.5E-19	0.76
Other beta/gamma (60Co)	0.0100	1.5E-14	0.15	0.00073	1.2E-13	0.088
Radioactive iodine (1261)	0.0103	5.6E-16	0.0058	-	-	-
Alpha emitters (²¹² Pb)	0.0076	4.3E-16	0.0032	-	-	-
Total from emissions			3.4			0.86
Water releases	Nant d'Avril			Le Lion		
Tritium (HTO)	6.3	9.5E-20	0.00060	38	9.5E-20	0.0036
Other beta/gamma (²² Na)	0.041	7.1E-16	0.029	0.053	7.1E-16	0.037
Total from water releases			0.030			0.041
Stray radiation			21			14
Total from all sources (rounded)			25			15

Effective dose breakdown

INRNE Sofia / 30 March 2006

Outlook - on the way

- LHC: unprecedented beam intensity and energy
 - 2 beams with 7 TeV protons
 - 350 MJ of stored energy per beam
- RAMSES project
 - PIPS chambers for short-lived radioactive gases (DL of ~ 1 kBq/m³)
 - Water monitors with spectroscopic analysis
 - Ultrasonic anemometers
 - State-of-the-art data acquisition
- LHC & CNGS: Number of stations and samples will be doubled.

Outlook – future accelerators

- CLIC Compact Linear Collider (clean like LEP)
- Future challenges:
 - Neutrino factories: hadron beams of MW power
 - Muon colliders
 - Exposure from neutrinos (!)
 - Critical groups of the population at long distances from the source
 - Neutrino dosimetry (!)